微信扫一扫,关注公众号

  • 科技行者

  • 算力行者

见证连接与计算的「力量」

首页 利用AI技术,打造更强大的处理芯片

利用AI技术,打造更强大的处理芯片

2020-04-23 16:37
分享至:
----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.-
2020-04-23 16:37 科技行者

当前,越来越多的初创企业与大型半导体公司正争相推出新型AI芯片。Synopsys、Cadence以及Mentor Graphics等电子工具与设计服务厂商,则希望寻求更多前所未有的方案,帮助设计师们加快产品投产速度。

有趣的点来了:目前各家公司采取的主流研发提速手段之一,就是利用AI技术协助构建更强大的AI芯片。其中,设计流程后端(即物理设计阶段)对AI工具的支持表现得尤为成熟,而各早期采用者也得到了相当可观的收益。

图一:这是一块英伟达Drive AGX Orin芯片,其结构极度复杂,包含多达170亿个晶体管。有趣的是,目前业界正利用AI技术为此类芯片提供更高效的设计支持。

相关问题

实际上,设计团队相当于面对着一个规模庞大的“搜索”难题:单是平面图形搜索,就涵盖惊人的1090,000 万种可能性。与之对应,国际象棋中“只”包含10123种可能性,而围棋则包含10360种可能状态。之所以要用棋类作类比,是因为目前的AI软件完全能够以下棋的方式“玩转”物理设计。虽然AI方案往往需要耗费巨量计算资源,但同时也能够快速对多到难以想象的选项做出分类,优化参数实现一系列既定目标,从而高效为芯片设计找到最理想的PPA组合。

强化学习——攻克芯片设计难题的关键

AI领域存在一个无监督学习分支,被称为强化学习(RL),能够以试错方式探索并掌握解决问题的方法。具体来讲,计算机会不断“尝试”一个个解决方案,并通过结果的趋好/趋坏来不断增强该解决方案中的参数。在经过数万亿次的重复之后,解决方案终将收敛——这就代表着“最佳实践”。

电子设计自动化(EDA)厂商Synopsys公司一直在与客户联手推进这方面试验,并获得了令人欣喜的结果。

总结

再结合Synopsys在强化学习方面的早期研究成果,相信大家更能够理解AI辅助设计的重要份量,以及黄仁勋对这一方案的认可与期望。

分享至
0赞

好文章,需要你的鼓励

推荐文章
----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.-